B. N. Mandal University, Laloonagar, Madhepura

Details of theory & Sessional Papers code of 4th Year B. Tech. Course

Branch: ELECTRICAL ENGINEERING

Sl No.	Subject	Subject Code	Branch Code	L	Т	P	Th. Ext.	Th.	Sessional
01	Linear control theory	LCT	EE-401	2	1	3	70	30	Linear control theory-50
)2	Advance electrical machine	AEM	EE-402	3	0	0	70	30	
03	Protection of power apparatus & system	PAPS	EE-403	3	0	3	70	30	Protection of power apparatus & system-
4	Power system design	PSD	EE-404	3	()	3	70	30	Power system design-100
5	EHV power transmission	EHVPT	EE-405	3	0	0	70	30	Elective-I
16	Industrial drives and control -	IDC	EE-406	3	0	3	70	30	Elective-II
7	Power system dynamics and reliability	PSDR	EE-407	3	0	0	70	30	
8	Engineering Economics and Management	EEM	EE-408	3	0	0	70	30	
9	Project	Project	EE-409	0	0	3			Project-100
0	Seminar	Seminar	EE-410	-	-	3			Seminar -50

(External)

Name: Designation:

Address:

Expert-II (Internal) Name:

Designation:

Address:

Dean Faculty of Science & Engineering

BNMU, Madhepura

Principal MIT

Rambagh purnea

Syllabus committee

BNMU Madhepura

Subject: Linear Control Theory Branch Code: EE- 401 (EE/ECE) L-T-P: 2-1-3 First Term 1. Introduction: the control system, servomechanism, servomotor, standard test signal. Lecture: 4 2. Time response analysis: time response of second order system, design consideration for higher order system stability relative stability 3. The root locus technique: concept, consideration of root loci roots contour system with transformation log. Lecture: 8 Second-Term 4. Frequency response analysis: correlation between time and frequency response, bode plot, root locus and minimum phase system log magnetic vs phase plot, stability in frequency domain, polar plots. Lecture: & 5. Mathematics preliminaries: Nyquest stability criteria, assessment of relation stability using Nyquest criteria. Lecture: 5 6. Close loop frequency response. Lecture: 3 7. Compensation of control system: Introduction type compensation approach to compensation. Lecture. 8 Text books: 1. Modern control system by Nagrath & Gopal Reference books: 1. Modern control engineering byn K Ogata, Pearson Education. 2. Control Engineering by kuo. Linear Control Theory Lab: 1. AC & DC position control system. 2. AC & DC servomotors 3. Stepper motor control using 8085µP 4. Seven segment display from 0-9 using 8085μP. 5. OFF/ON control using 8085μP.

SUBJECT: ADVANCE ELECTRICAL MACHINE BRANCH CODE – EE402 (EE)

L-T-P:3-0-0 FIRST TERM

- 1. Special Electrical Machines: Hysteresis motor-constructional feature, principal of operations, performance, characteristic and application, stepper motor: types, constructional features, principle of operation & switching operation, performance, characteristic & application, universal motor: constructional feature, working principle, phasor diagram, performance and application.
- 2. Repulsion motor: Starting performance and application, double cage induction motor: constructional feature, principle of operation and application

Lecture: 05
3. Introduction to generalized theory of electrical machines: Synchronous machines and induction machines.

SECOND TERM

- 4. Dynamics of Electrical machines: general torque equation, inertia constant, analysis of synchronous machine under transient condition, stability, effect of damping.
- Lecture: 08
 5. State variable model of electrical machines: Unbalanced operation of two and three-phase induction motors.

6. New machines: Brushless d.c. Machines, Microprocessor based speed control of motor using thyristers, equivalent circuits, torque speed characteristic and application.

Lecture: 08

Scanned with CamScanner

Lecture: 07

SUBJECT: - PROTECTION OF POWER APPARATUS & SYSTEM BRANCH CODE - EE403 (EE) L-T-P:3-0-3 FIRST TERM 1. Name and cause of faults. 2. Schemes of protection: Methods of fault discrimintation. Lecture: 5 3. Protective relays: Construction and operating principal of over current relays, directional relays, Distance relays, Differential relays.

Lecture :5

4. Protection of feeders: Over current protection and distance protection. Lecture:5

5. Protection of transformer and generator.

Lecture :5

SECOND TERM

6. Mechanism of arc interruption, Restriking voltage, Recovery voltage, RRRV, factors affecting the performance of circuit breaker, current chopping.

7. Circuit breaker: Construction and operating principle of air blast, oil. SF6 and vacuum circuit breaker.

Lecture:7

8. Protection against over voltage: cause of over voltage, lightning arrestors, surge absorber, insulation co-ordination.

Lecture:5

9. Grounding: Advantage, solid, resistance grounding. Peterson coil.

Lecture :7

Text Books:

1. Power System Protection & switch Gear by B.Ram & D.N. Vishwakarma, TMH

2. Power System Protection & switch Gear by R&C

Reference Books:

1. Art & science Protection Relaying by Moson

2. Switch gear and Protection by Sunil S.Rao, Khanna Publication

PROTECTION OF POWER APPARATUS & SYSTEM LAB

Practical based on syllabus

9211

(3111)

200 m

SUBJECT: - POWER SYSTEM DESIGN L-T-P:3-0-3

FIRST TERM

1. Per unit system representation: reactance diagram, impedance diagram.

Lecture: 5

- 2. Load flow Analysis: load flow problem, Y-bus, Formulation of problem, solution technique using Gauss seidel method.

 Lecture: 7
- 3. Symmetrical short circuits Analysis: Short circuit of a Synchronous machine on no load, Short circuit of loaded synchronous machine, Thevenin's equivalent circuit approach for short circuit analysis.

 Lecture: 7
- 4. Symmetrical component: Transformation, phase shift in star-delta transformer, sequence Impedance and sequence network of transmission line. Synchronous machine, Transformer and power system.

 Lecture: 8

SECOND TERM

- 5. Unsymmetrical Short Circuits: Symmetrical component analysis of unsymmetrical short circuits, single line to ground fault. Double line to ground fault and line to line fault

 Lecture: 10
- 6. Power system stability problem: Swing equation, System response to small disturbances, Power angle equation and diagram.

 Lecture: 9
- 7. Transient stability: Equal area criterion, Measures for improving transient stability.

 Lecture: 5

Text Books:

- 1. Power system Analysis by Stevenson and Grainger
- 2. Electrical Energy Systems Theory an Introduction. Olle I. Elgerd.

Reference Book:

- 1. Nagrath- Kothari, Modern power system Analysis.
- 2. C.L. Wadhwa, Electrical power systems
- 3. B.R.Gupta, power systems Analysis.

POWER SYSTEM DESIGN(LAB)

Practical based on syllabus.

> TAITITS

1711

Scanned with CamScanner

SUBJECT: - ELECTIVE-I (EHV POWER TRANSMISSION)

BRANCH CODE - EE405

(EE)

L-T-P: 3-0-0 FIRST TERM

1. Maxwell's coefficients: Sequence inductance and capacitance. Charge Matrix, Effect of Ground wire.

Lecture: 6

2. Surface Voltage-gradient: on bundled conductors Mangoldt's formula, Gradient factors & their use, Ground level electrostatic field of EHV lines.

Lecture: 6

3. Power frequency: over voltage control, Series and shunt compensation, Generalized Constant of Compensated line, static Var Compensators (SVC/SVS).

4. Switching over voltage in EHV Systems.

Lecture: 7 Lecture: 6

SECOND TERM

5. Six-pulse Bridge circuit: Waveforms and relevant equations. Twelve-pulse converter, Advantage of higher pulse number, Bipolar to monopolar operation, Converter performance with phase control, Communication and effects of reactance. Lecture: 8

6. Introduction to HVDC system: Economical advantages. Technical advantages.

Critical distance, Submarine transmission.

Lecture: 5

7. Inverter: Equivalent circuit of HVDC system, Schematics diagram, Reactive power consideration in HVDC system, Harmonics, Filters in HVDC System. Lecture: 7

Text Books:

- 1. Extra high voltage AC Transmission Engineering (2nd Ed) by R.D. Begamudre, Wiley Eastern Ltd.
- 2. HVDC Power Transmission Systems by K. Padiyar, Wiley Eastern Ltd.

Reference Books:

1. EHV AC and HVDC Transmission Engineering and Practices by S.S. Rao, Khanna Publication

Publication.

1/3/1/

H1X11113

INDUSTRIAL DRIVES AND CONTROL

BRANCH CODE - EE-406

L-T-P:3-0-3

FIRST TERM

- 1. Introduction: Electrical Drives & their advantages, parts of electrical drives, D.C. & A.C. drives.

 Lecture: 4
 - Dynamics of Electrical Drives: Torque equations, Multiquadrant operation, load torque & their types, calculation of time and energy loss in transient operation, Steady state stability, load equalization.

 Lecture: 10
 - 3. Selection of Motor & its power rating: Types of motors & their enclosures, thermal model of motor for heating & cooling, classes of motor, duty cycle, rate of motor.

Lecture: 10

SECOND TERM

- 4. Control of Electrical Drives: Introduction, Mode of operation, speed controls and drive classification closed loop control of drives, speed and current sensing, manual, semi automatic and automatic control, magnetic and static control, power circuit & control circuit and their development, inter locking and sequential operation. Lecture: 15
- **D.C. Motor Drives : Performance** characteristics of DC Motors and their modifications, starting and design of starting circuit, braking, speed control, converter controlled DC drives, chopper controlled DC drives.`

 Lecture : 8
- 6. Induction Motor Drives: Performance characteristic of three phase induction motors and their modifications.

 Lecture: 6

Text Books:

- 1 Fundamental of Electric Drives by G.K. Dubey. NPH
 - 2. Power Semiconductor Controlled drives by G.K. Dubey. PHI
 - 3. Power Electronics and AC Drives by B.K. Boss, PHI

Reference Books:

- 1. Solid State Drives by K. Malarvizhi, scitech publication.
- 2. A first course in Electric Drives by S.K.pillai. Wiley Eastern.

Industrial Drives & Control Lab:

Practical based on theory.

A711/3

VIVEN

क्ष्य है। ज्यानि SUBJECT: - POWER SYSTEM DYNAMICS AND RELIABILITY

BRANCH CODE - EE407

(EE)

L-T-P: 3-0-0 FIRST TERM

- Classification of Power System Stability: Introduction to Power System
 Stability classification, small signal and Transient stability, Rotor angle & Voltage Stability.
 Lecture: 5
- 2. Synchronous Machine Modeling: Synchronous Machine, Basic Equations,
 Generator operated as part of large power grid.

 Lecture: 5
- 3. Small Signal (Steady State) Stability: Small Signal (Steady State) Stability, Linearization, State matrix.

 Lecture: 5
- 4. Transient Stability Studies: Transient Stability Studies, Network performance equations, alternate solution techniques- Runga Kutta and Trapezoidal, Methods of improvement of transient stability.

 Lecture: 7

SECOND TERM

- 5. The Basics of Power System Reliability: Characteristics of component failure, the general reliability functions, the exponential distribution, mean time to failure
- 6. Generation Reliability Model: Two state Markov Model, Steady-state availability, Steady-state unavailability or forced outage rate (FOR). Capacity outage probability table (COPT), Recursive techniques, Loss of load probability (LOLP) and loss of expectation calculation.

 Lecture: 10
- 7. Transmission system reliability evaluation and composite reliability evaluation:
 Average interruption rate method, The frequency and duration method, Stormy and
 normal weather effect, The Markov process approach. Two plant single load composite
 system reliability analysis.

 Lecture: 5

Text Books:

- 1. Power System Control & Stability by P. Kundur.
- 2. Power System Reliability Evaluation by Roy Bilingtor.

Reference Books:

- 1. Electrical Energy System Theory by O.I. Elgerd
- 2. Power System Analysis by Stevenson and Grainger
- 3. Power System Planning by R.L. Sullivan

4. Reliability Modeling in Electric Power System by J. Endrenyl.

11/12/11/2

ENGINEERING ECONOMICS AND MANAGEMENT (CSE/EZ)

BRANCH CODE-EEM-408

FIRST TERM

- 1.ENGINEERING ECONOMY:
- (a)Simple and compound interest, annuities
- (b)Basic methods for making economy studies-(i)Present worth method (ii)future worth method (iii)I.I.r
- (c) Comparison of alternative –(i) present worth method

(ii) Future worth method

Lecture:12

2. Management & Organization: (a) Principle of Management (b) element of management, planning organization direction and control (c)Organizational structure-line, line and styaff, functional, divisional, project & matrix Organizational

3.Personnel Management:(a)Function,Recruitment,selection,training promotion,discipline (b)job evolution (c)ment rating (d)wedge and incentive Lecture:04

Second Term:

4.iviarking Management: (a) Marking research and sale forecasting (b) sales management (c)advertisement and sales promotion

5.ACCOUNTING:meaning, scope and role of accounting concept and convention, accounting as an information system, Recording of transaction in journal and ledgers, trial balance preparation of final

6.Entrepreneurship Development: Introduction to entrepreneurship ,rural interpreneurship,women entrepreneurship, factor effecting entrepreneurship growth

ext books:

- 1.Engineering Economics by Degamo, Sullivan & Canada, . McMilan
- 2.Double entry book keeping by T.S.Grewal, S.Chand
- 3. Principle & practice of Managementby LM Prasad, S. Chand
- 4. Personnel Management by CB Memoria-Himalaya

.Development entrepreneurship by Udai Parekh & T.Venkatshwara

Scanned with CamScanner